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Abstract
We propose a deterministic method for simulating

chemical reactions, Deterministic Abstract Rewriting
System on Multisets (DARMS), which is based on the
concept of Mass Action Low. The feasibility and util-
ity of DARMS are demonstrated by applying it to
the Oregonator, which is well-known model of the Be-
lousov Zhabotinskii (BZ) reaction.

1 Abstract Rewriting System on Mul-
tisets, ARMS

ARMS was proposed in 1996 [6] as an abstract
model of chemical reactions, Artificial Chemistry
(AC), in the context of the Artificial Life (AL). We
rigidly proved that an ARMS can be regarded as
a Chemical Master Equation (CME) and, through
continuous approximation, the deterministic Reaction
Rate Equation (RRE), which is denoted by a set of
ordinal differential equations can be obtained from an
ARMS [7].

Basically, an ARMS is a construct Γ = (A, w,R),
where A is an alphabet, w is a multiset present in the
initial configuration of the system, and R is the set of
multiset rewriting rules.

Let A be an alphabet (a finite set of abstract sym-
bols). A multiset over A is a mapping M : A 7→ N,
where N is the set of natural numbers; 0, 1, 2,. . . . For
each ai ∈ A, M(ai) is the multiplicity of ai in M , we
also denote M(ai) as [ai].

We denote by A# the set of all multisets over A,
with the empty multiset, ∅, defined by ∅(a) = 0 for all
a ∈ A.

A multiset M : A 7→ N, for A =
{a1, . . . , an} is represented by the state vector w =
(M(a1),M(a2), . . . ,M(an)), w. The union of two mul-
tisets M1,M2 : A 7→ N is the addition of vectors w1

and w2 that represent the multisets M1,M2, respec-
tively. If M1(a) ≤ M2(a) for all a ∈ A, then we say

that multiset M1 is included in multiset M2 and we
write M1 ⊆ M2.

A reaction rule r over A can be defined as a couple
of multisets, (s, u), with s, u ∈ A#. A set of reaction
rules is expressed as R. A rule r = (s, u) is also rep-
resented as r = s → u. Given a multiset w ⊆ s, the
application of a rule r = s → u to the multiset w pro-
duces a multiset w′ such that w′ = w − s + u. Note
that s and u can also be zero vector (empty).

The reaction vector, νji denotes the change of the
number of ai molecules produced by one reaction of
rule rj .

1.1 ARMS with chemical kinetics

We modify the ARMS for modeling chemical kinet-
ics and this enables us to use experimentally obtained
reaction rates directly, similar to the derivation of the
Gillespie’s “τ -leap method” [4].

In order to handle experimental data, we employ
multisets with real multiplicities; such a multiset X :
A 7→ R for A = {a1, . . . , an} is represented by the
state vector x = (X(a1), X(a2), . . . , X(an)). X(ai)
denotes the molar concentration of specie ai.

Let us assume that there are N ≥ 1 molecular
species {a1, ..., an}, ai ∈ A that interact through re-
action rules R = {r1, ..., rm}. As the time evolution
of x unfolds from a certain initial state, let us sup-
pose the state transition of the system to be recorded
by marking on a time axis the successive instants
t1, t2, ... as X(tj) (j = 1, 2, ...). We specify the dynam-
ical state of x(t) ≡ (X(a1(t), X(a2(t)), ..., X(aN (t))),
where X(ai(t)) is the molar concentration of ai specie
at time t, t ∈ R.

Chemical kinetics

We assume that all chemical reactions take place in
a well-stirred reactor; this assumption is required due
to the strong dependence of the reaction rate on the
concentration of the reagent species. We define the
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function fj , called the propensity function for rj ∈ R
by

fj(x) = cjhj , (1)

where cj denotes the average probability that a par-
ticular combination of rj reactant molecules will react
in the next infinitesimal time interval dt and hj is the
number of possible combinations of the species of rj

in dt.
fjx(t)dt means that the probability that reaction

rj will occur in the next infinitesimal time interval
[t, t + dt), (j = 1, ...,m).

The time evolution of x(t) is a jump Markov pro-
cess on the N -dimensional non-negative lattice. In
this case, an ARMS has a macroscopically infinitesi-
mal time scale, ∆, where reaction rules can be applied
several times simultaneously, yet since the stoichio-
metrical change of the state during ∆ is small enough,
none of the propensity functions change appreciably.

The parameter ∆ corresponds to τ (small time in-
terval) in the Gillespie’s method [4] and it satisfies the
Leap Condition given below; an amount ∆ that spans
a very large number of applying every reaction rules
still satisfies the Leap Condition.

Leap Condition: We require ∆ to be small enough
that the change in the state during [t, t+∆] will be so
small that no propensity function will suffer an appre-
ciable (i.e., macroscopically noninfinitesimal) change
in its value.

We also assume that the number of applications of
each reaction rule in ∆ obeys

⟨P(fj(x), ∆⟩ = fj(x)∆ ≫ 1(∀j = 1, ...,m), (2)

where P(fj(x),∆) is the Poisson random variables is
the number of reactions that occur in ∆.

Here, let us consider the probability function Q, de-
fined by Q(z1, ..., zk|∆,x, t), which means the proba-
bility, given X(t) = x, that in the time interval [t, t+δ)
exactly zj times of rule applications or rj will occur,
for each j = 1, ...,m. Q is evidently the joint probabil-
ity density function of the M integer random variables,
Zj(∆,x, t) means the number of times, given X(t)=x,
that reaction rule rj will apply in the time interval
[t, t + ∆) (j = 1, ...,m).

If the equation (2) is satisfied, the Poisson random
numbers will be practically indistinguishable from
normal random numbers, which are uncorrelated sta-
tistically independent normal random variables with
mean 0 and variance 1.

Then the jump Markov process can be approx-
imated by the continuous Markov process defined

by the standard form of chemical Langevin equation
(CLE).

λi =
m∑

j=1

zjνij =
m∑

j=1

fjνji =
m∑

j=1

[fj(x)∆ + (fj(x)∆)
1
2 nj ]νji

=
m∑

j=1

νjifj(x)∆ +
m∑

j=1

νjif
1
2
j (x)nj∆

1
2 , (3)

where nj is temporally uncorrelated statistically inde-
pendent normal random variables. Since Zj(∆,x, t) =
P(fj(x, ∆)), it is equal to fj(x)∆, by the equation (2).

In case fj(x)∆ → ∞, (2) implies that in the part
fj(x)∆ + (fj(x∆)

1
2 nj of the equation (3) the second

term becomes negligibly small compared to the first
term and λi in the limit (fj(x)∆ → ∞), because

λi =
m∑

j=1

zjνji =
m∑

j=1

[fj(x)∆]νji

=
m∑

j=1

νjifj(x)∆. (4)

This is the Euler formula (piecewise linear approxima-
tion) for numerically solving the RRE. It shows how to
derive the continuous and deterministic RRE of tra-
ditional chemical kinetics from the stochastic method.
Since νjifj(x) represents the stoichiometric change in
the next infinitesimal time, it can be regarded as the
reaction rate of rj , vj , and we obtain:

λi =
m∑

j=1

νjifj(x)∆ ≡
m∑

j=1

vj(x)∆. (5)

In the Gillespie τ leap method, the number of ap-
plications of each rule within τ is randomly generated
according to the Poisson or Normal distribution and
λi is calculated.

In the ARMS, λi is calculated by using the reac-
tion rate given by the equation (5). As in the nu-
merically solving an ordinary differential equation of
the form dX/dt = f(X) by the Euler method, a
leap down the stepwise time axis by ∆ according to
X(t+∆) = X(t)+f(X(t))∆ will produce errors when-
ever the function f changes during that ∆ increment.

It is well-known that the second-order Runge-Kutta
procedure can reduce these errors; use the simple Euler
method to estimate the “midpoint” value of X during
∆, and then calculate the actual increment in X by
evaluating the slope function f at that estimated mid-
point. The midpoint value can be obtained from the

The Thirteenth International Symposium on Artificial Life and Robotics 2008(AROB 13th ’08),
B-Con Plaza, Beppu, Oita, Japan, January 31-February 2, 2008

©ISAROB 2008 517



expected state change λ as x + λ
2 . In the Gillespie’s τ

leap method, this procedure is used and it shows that
this procedure can reduce numerical errors [4].

1.2 Algorithm of DARMS

In Deterministic Abstract Rewriting System on
multisets (DARMS) [8], reaction rules are applied in
maximally parallel and deterministic way. Hence, the
DARMS accommodates P Systems, while it has back-
ground in theoretical chemistry.

Step 0(Initialization). The time t is set to 0 and the
set of vectors V = (δ1, δ2, ..., δN ) (j = 1, 2, ...,m), ex-
pressing the stoichiometric change of each species, are
initialized. Then all inputs of the system are assigned
to their respective variables,

• X(a1), X(a2), ..., X(aN ) are set to the initial
quantities of species;

• k1, ..., km to set m rate constants corresponding
to the m reactions;

• tstop to the ending instant of simulation;

• set the value of ∆;

Step 1(Calculation of state change vector Λt). Ac-
cording to reaction rules, stoichiometric change of each
specie λi is calculated as well as the state change vec-
tor; Λt = (λ1, λ2, ..., λN ) is calculated, where λi =∑m

j=1 νjivjx(t)∆.

Step 2(System update and branching). The quantity
of each species and t is updated, by using Λt and ∆:

x(t) = x(t − ∆) + Λt−∆,

t := t + ∆.

If t ≥ tstop or if there are no reactions left in the
reactor, the simulation is stopped and the results are
sent to the output stream. Otherwise, the simulation
returns to Step 1.

2 The Oregonator

The Belouzov-Zhabotinskii (BZ) reaction displays a
remarkable repertoire of exotic behavior, including pe-
riodic and chaotic temporal oscillations, multiple sta-
ble stationary states, temporally and spatially periodic
expanding target patterns, rotating multi-armed spiral
waves.

(Process A)
X,Y,H

k1→ 2W : (r1),

A, Y, 2H
k2→ X,W : (r2),

(Process B)

2X
k3→ A,W,H : (r3),

A,X,H
k4→ 2X, 2Z : (r4),

(Process C)
B,Z

k5→ 0.5Y : (r5).

Table 1: Oregonator

The chemical kinetic description of BZ reaction was
put forward by Field, Kőrős (FKN) [2]. FKN can be
considered as the best understanding of the process by
recognizing that there are two different over-all pro-
cesses that can occur in the system.

The FKN mechanism can be described as three con-
current (and at times competing) processes:

• Process A: The three steps reduction of bromate
to bromine.

• Process B: The introduction of hypobromous acid
to compete as a reducing agent for bromate.

• Process C: The reduction of the catalyst formed
from Processes A and B.

The Oregonator scheme is outlined in Table 1:
As for reaction constants, a combination of Tyson’s

”Lo” and Field-Főrsterling values (TFF parameter)
are used [5]: k1 : 106M−2S−1, k2 : 2M−3S−1, k3 :
2×103M−1S−1, k4 : 10M−2S−1, k5 : B×2×10−2S−1,
where M stands for one molar, and S stands for a
second.
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Figure 1: DARMS, ∆ = 0.0001: Population dynamics
of X,Y, Z, where the vertical axis illustrates the molar
concentration of chemicals (mole) and the horizontal
axis illustrates the time, where each stepwise is ∆. It
shows a typical pattern of oscillations
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2.1 Simulation of the Oregonator
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Figure 2: DARMS, ∆ = 0.1: Population dynamics of
X,Y, Z, where the vertical axis illustrates the molar
concentration of chemicals (mole) and the horizontal
axis illustrates the time, where each stepwise is ∆.
The amplitudes of oscillations are smaller than the
case when ∆ is smaller than 0.1.

In the Oregonator [3], chemicals A and B are re-
sources and assumed that they are continuously sup-
plied or largely existing in comparison with other
chemicals. W is the final product of these reactions
and typical oscillations among X, Y and Z emerge.
Reactions of generating X (HbrO2) are triggers of os-
cillations and these reactions increase the concentra-
tion of Z (C4+

e ) and then high concentration of Z leads
to reactions generating Y (Br); since this reaction re-
quired Z, the concentration of Z is decreased.

We simulate the Oregonator by using the DARMS
with the TFF parameter. We examine each case when
∆ = 0.0001,0.001,0.01,0.1,1.0. When the values of ∆
are between 0.0001 and 0.01, the stoichiometric change
of species show typical oscillations (Figure 1); these
typical oscillations can also be seen through numerical
simulation of the reaction rate equation that are ex-
pressed by a set of differential equations. At ∆ = 0.1,
the amplitude of oscillation becomes small, while the
patterns of oscillations were kept the same (Figure 2)

At ∆ = 1.0, the pattern of oscillations become dif-
ferent from the typical one, where the amplitude of
oscillation of X and Z become small, and the am-
plitude of Y declines to nearly zero (Figure 3). The
reason is that the value of ∆ becomes large: since the
calculation of the DARMS requires piecewise linear
approximation, as the ∆ becomes larger, the quality
of approximation decreases.
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Figure 3: DARMS, ∆ = 1.0: Population dynamics of
X,Y, Z, where the vertical axis illustrates the molar
concentration of chemicals (mole) and the horizontal
axis illustrates the time, where each stepwise is ∆. The
pattern of oscillation is different from the typical one.

References

[1] L. Bianco, Membrane Models of Biological Sys-
tems, Ph.D. Thesis, Univ. of Verona, 2007.
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